Neural fuzzy control systems with structure and parameter learning
نویسنده
چکیده
Reading a book is also kind of better solution when you have no enough money or time to get your own adventure. This is one of the reasons we show the neural fuzzy control systems with structure and parameter learning as your friend in spending the time. For more representative collections, this book not only offers it's strategically book resource. It can be a good friend, really good friend with much knowledge.
منابع مشابه
INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملA Flexible Link Radar Control Based on Type-2 Fuzzy Systems
An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure o...
متن کاملAdaptive Approximation-Based Control for Uncertain Nonlinear Systems With Unknown Dead-Zone Using Minimal Learning Parameter Algorithm
This paper proposes an adaptive approximation-based controller for uncertain strict-feedback nonlinear systems with unknown dead-zone nonlinearity. Dead-zone constraint is represented as a combination of a linear system with a disturbance-like term. This work invokes neural networks (NNs) as a linear-in-parameter approximator to model uncertain nonlinear functions that appear in virtual and act...
متن کاملAdaptive asymmetric fuzzy neural network controller design via network structuring adaptation
This paper proposes a self-structuring fuzzy neural network (SFNN) using asymmetric Gaussian membership functions in the structure and parameter learning phases. An adaptive self-structuring asymmetric fuzzy neural-network control (ASAFNC) system which consists of an SFNN controller and a robust controller is proposed. The SFNN controller uses an SFNN with structure and parameter learning phase...
متن کاملReinforcement structure/parameter learning for neural-network-based fuzzy logic control systems
AbstructThis paper proposes a reinforcement neuralnetwork-based fuzzy logic control system (RNN-FLCS) for solving various reinforcement learning problems. The proposed RNN-FLCS is constructed by integrating two neural-networkbased fuzzy logic controllers (NN-FLC’s), each of which is a connectionist model with a feedforward multilayered network developed for the realization of a fuzzy logic cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Intelligent and Robotic Systems
دوره 17 شماره
صفحات -
تاریخ انتشار 1996